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Abstract: In recent years, artificial intelligence (AI) has shown great promise in medicine. However,
explainability issues make AI applications in clinical usages difficult. Some research has been
conducted into explainable artificial intelligence (XAI) to overcome the limitation of the black-box
nature of AI methods. Compared with AI techniques such as deep learning, XAI can provide
both decision-making and explanations of the model. In this review, we conducted a survey of
the recent trends in medical diagnosis and surgical applications using XAI. We have searched
articles published between 2019 and 2021 from PubMed, IEEE Xplore, Association for Computing
Machinery, and Google Scholar. We included articles which met the selection criteria in the review
and then extracted and analyzed relevant information from the studies. Additionally, we provide an
experimental showcase on breast cancer diagnosis, and illustrate how XAI can be applied in medical
XAI applications. Finally, we summarize the XAI methods utilized in the medical XAI applications,
the challenges that the researchers have met, and discuss the future research directions. The survey
result indicates that medical XAI is a promising research direction, and this study aims to serve as a
reference to medical experts and AI scientists when designing medical XAI applications.

Keywords: artificial intelligence; machine learning; deep learning; explainable artificial intelligence
(XAI); diagnosis; surgery

1. Introduction

Machine learning (ML) and deep learning (DL) have achieved impressive progress
recently, and the success of artificial intelligence (AI) in the medical field has resulted in a
significant increase in medical AI applications. The goal of medical AI research is to build
applications that use AI technologies to assist doctors in making medical decisions [1]. AI is
used in various medical applications, such as disease diagnosis [2], surgery [3], and many
more. However, medical AI applications are faced with some challenges, including the
black-box nature of some AI models. The poor explainability of these black-box models
leads to distrust from medical experts to make explainable clinical inferences. There are
often millions of parameters in DL models, and they only return a final decision result
without any explanation. Due to the lack of transparency of deep neural networks, it
is hard for the user to judge whether the decision is reliable, compromising trust with
doctors. Medical AI applications need to be transparent to increase the level of trust
with doctors. Research on explainable artificial intelligence (XAI) has recently gained
considerable attention [4]. For medical AI applications to be accepted and integrated into
practice, XAI is crucial.

1.1. Related Artificial Intelligence Concepts

Artificial intelligence refers to the development of intelligence by machines, and
machine learning is a part of AI. An ML algorithm is trained by the provision of many
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examples for a given task, the statistical pattern in these examples is found, and eventually,
the rules to automate the task are discovered [5]. Traditional ML algorithms, including
k-nearest neighbor (kNN), support vector machine (SVM), decision tree (DT), and random
forest (RF), have been applied in medical AI. kNN is an algorithm that finds the closest
data points in the training set to be the prediction for the new data [6]. SVM assumes that
the data are linearly separable and seeks to find a linear hyperplane (decision boundary)
to separate the data. The examples in an SVM model are represented as points in space,
divided into separate categories by a linear hyperplane [7]. A decision tree is a tree-like
structure in which each internal node represents an attribute test, each branch represents
an outcome of the test, and each leaf indicates the class. In DT, the basic idea is to break
up a complex decision into several simpler ones so that the final result will resemble the
intended desired outcome [8]. RF is an ensemble machine learning algorithm that consists
of many decision trees. For classification tasks, the decision of RF is the voting result from
these decision trees [9].

In addition to traditional machine learning methods, many studies have also used
deep learning methods for medical applications. A deep learning algorithm can learn
representations of raw data without feature engineering. Typical deep learning methods
include multi-layer perceptron (MLP), deep neural networks (DNNs), convolutional neural
networks (CNNs), and recurrent neural networks (RNNs) [10]. Additionally, in terms of
the performance evaluation of the ML methods, the typical evaluation metrics are accuracy,
precision, recall, F1-score, AUC, and ROC [11].

1.2. Related Explainable Artificial Intelligence Concepts

According to [12], explainability is the ability to explain AI decision-making in un-
derstandable terms for humans, with a broader range of end-users on how a decision
has been drawn. The different end-users focus on the different perspectives of explain-
ability. AI experts or data scientists are more concerned about the explainability of the
model/algorithm. However, medical experts or physicians are more concerned about
clinical inference/prediction. The other notion related to explainability is interpretability.
Interpretability means the capacity to provide the meaning of an abstract concept [13].
Explainability refers to the interpretation of predictions made in the presence of new cases,
whereas interpretability refers to the rendition of the model learned from the data during
training [14]. Furthermore, there are two types of XAI methods: intrinsic and post hoc [15].
An intrinsic method is one in which we can understand a decision-making process or the
basis of a technique without additional information. Typical intrinsic methods include lin-
ear regression (LR) [16], logistic regression, k-nearest neighbor, rule-based learners, general
additive models, Bayesian models, and decision trees. Deep learning is a subset of machine
learning, and machine learning is a subset of AI. In addition, we believe that XAI is a
subset of AI, and its intrinsic methods are ML. Hence, in Figure 1, we show the relationship
between artificial intelligence, machine learning, deep learning, and explainable artificial
intelligence.

Using this method, we can understand what part of the input data accounts for the
classification decision in any classifier. Other post hoc methods include SHapley Additive
exPlanations (SHAP) [17], class activation mapping (CAM) [18], principle component
analysis (PCA) [19] and Gradient-weighted class activation mapping (Grad-CAM) [20].
According to [21,22], post hoc explainability methods can be categorized as: dimension
reduction, attention mechanism, restricted neural network architecture, text explanation,
visual explanation, local explanation, explanation by example, explanation by simplification
and feature relevance. The taxonomy of XAI methods is shown in Figure 2.
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For evaluating XAI, no objective or unified evaluation metric has been adopted. Doshi-
Velez and Kim define three types of XAI evaluation approaches [12]: application-grounded
evaluations, human-grounded evaluations, and functionally grounded evaluations.

1.3. Contributions

There have been few studies exploring XAI’s potential in medical AI applications [23].
This study is focused on the medical XAI applications in diagnosis and surgery. The general
pipeline of a medical XAI application is shown in Figure 3. As shown in Figure 3, using
the intrinsic XAI method enables the medical XAI application to examine the medical
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data and provide decisions and explanations to the doctors. Alternatively, if the medical
application utilized post hoc XAI, the black-box methods would be applied to medical
data for decision-making, followed by the post hoc XAI providing an explanation of the
black-box methods.
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In recent years, the importance of XAI has been widely recognized in academia and
industry. Due to the high degree of complexity, the decision-making process of the deep
learning model is hard to interpret. Moreover, the black-box nature of these models is
dangerous if they are deployed in clinical applications because they may not provide
reliable justification to the medical experts. Many XAI studies have been proposed in the
AI community to overcome this issue. However, in the interdisciplinary field of artificial
intelligence and medicine, deep learning models are the majority choice for most medical
AI applications. Therefore, it is essential to utilize and develop XAI methods instead of deep
learning black-box methods. We found that most surveys on medical AI applications only
use deep learning, but there has been no survey focusing on the medical AI applications
using XAI, especially in diagnosis and surgery. We believe that such a survey will give
both medical and AI experts insights into the recent progress on medical XAI applications.
Furthermore, it will be helpful for medical and AI researchers to develop their medical XAI
applications. This survey aims to address the following three research questions (RQs):
(RQ1) What are the current research trends on medical XAI applications?; (RQ2) How do the
studies included in this survey tackle the trade-off between accuracy and explainability?;
and (RQ3) Is it possible to deploy these models into the clinical real-world environment
to assist the medical experts and make an explainable clinical inference? In summary, the
main contributions of this survey include:

- A brief introduction of the AI/DL concepts, XAI concepts, and the general pipeline of
medical XAI applications gives a quick start for medical experts;

- Our survey also provides a recent three-year overall literature review on the medical
XAI applications in the fields of diagnosis and surgery with a thorough analysis;

- We summarize the current trends, as well as discuss the challenges and the future
directions on how to design a better medical XAI application.

The rest of the paper is structured as follows: Section 2 describes the survey’s search
strategy; Section 3 presents the study selection results of the medical XAI applications
on diagnosis and surgery; in Section 4, we present the discussion of the survey, includ-
ing the findings of the study, experimental showcase, challenges, limitations, research
gaps, as well as the future directions and answers of the research questions; Section 5
concludes the survey.
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2. Search Strategy

A literature search was conducted using keywords explainable artificial intelligence,
diagnostics, and surgery. Additionally, the research papers cited in this review were found
on three electrotonic databases—PubMed, IEEE Xplore, and Association for Computing Ma-
chinery (ACM)—for relevant publications between 2019 and 2021 inclusive. Google Scholar
is searched between these dates for potentially relevant studies as well. The search strings
we use in this survey: (ALL(“Explainable Artificial Intelligence”) OR ALL(“XAI”) OR
ALL(“Explainable AI”) OR ALL(“Diagnostics”) OR ALL(“Surgery”) OR ALL(“Medical”)).
The survey aims to identify publications on medical XAI applications in diagnosis and
surgery. Hence, all the included papers had to focus on this topic. We excluded all the
survey/review articles, non-English articles, or non-peer-reviewed articles. The titles and
abstracts of these research papers were then screened for eligibility. Next, all screened
research papers were reviewed for relevance in full text; the eligible papers are included in
this review.

3. Medical Explainable Artificial Intelligence Applications
3.1. Diagnosis

In [24], a computer-aided framework was proposed by Kavya et al. for allergy diag-
noses. The authors applied several ML algorithms and then selected the best-performing
algorithm using k-fold cross validation. In terms of the XAI method, they developed
a rule-based approach by building a random forest. More specifically, each path in a
tree is represented as an IF-THEN rule, and the explanations are extracted from medical
data. Additionally, the authors deployed the computer-aided framework on the mobile
application, which can assist junior clinicians in confirming the diagnostic predictions.
In [25], Amoroso et al. presented an XAI framework for breast cancer therapies. They ap-
plied the clustering and dimension reduction method, and the experiment results demon-
strated that the framework could outline the most important clinical feature for the patient
and designed oncological therapies. Dindorf et al. proposed an explainable pathology-
independent classifier for spinal posture [26]. The authors used SVM and RF as the ML
classifiers and then applied LIME to explain the prediction of the ML classifier. In [27],
EI-Sappagh et al. proposed an RF model for Alzheimer’s disease (AD) diagnosis and pro-
gression detection. In addition, the authors first applied SHAP to select the critical features
in the classifier. Then, the authors used a fuzzy rule-based system. SHAP could provide a
local explanation for specific patient diagnosis/progression prediction explanations about
feature impacts. In addition, the fuzzy rule-based system could generate natural language
forms to help patients and physicians to understand the AI model. In [28], Peng et al. pro-
posed an XAI framework that can assist doctors with the prognosis of hepatitis patients. In this
paper, the authors compared intrinsic XAI methods such as logistic regression (LR), decision
tree (DT), and kNN with the complex models SVM, XGBoost, and RF. Furthermore, the authors
applied the post hoc methods SHAP, LIME, and partial dependence plots (PDPs) [29].

In [30], Sarp et al. first proposed a CNN-based model for chronic wound classification
and then applied the XAI method LIME to explain the CNN-based model. The proposed
CNN-based model also used the transfer learning technique and achieved an average
precision at 95%, an average recall at 94%, and an average F1-score at 94%. The original
wound image and its heatmap image produced by LIME are shown in Figure 4. By using
LIME, the model could provide visual cues for clinician. Tan et al. presented an otosclerosis-
logical neural network (LNN) on temporal high-resolution computed tomography (HRCT)
bone slices for fenestral otosclerosis diagnosis [31]. The proposed method achieved an
AUC of 99.5% on the external test dataset. Additionally, they applied the XAI method to
visualize the learned deep representations of the LNN model. In [32], Wu et al. proposed a
counterfactual multi-granularity graph supporting fact extraction (CMGE) for lymphedema
diagnosis. CMGE is a graph-based neural network that can extract facts from the elec-
tronic medical record (EMR). In addition, it could obtain a causal relationship between
features. The proposed model was evaluated on actual Chinese Electronic Medical Records,
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and demonstrated an accurate and interpretable approach by providing counterfactual
reasoning on the graph.
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Similarly, Chen et al. presented an interpretable clinical diagnosis model on the EMR
documents [33]. Additionally, the proposed model consisted of Bayesian network ensem-
bles and entity-aware CNN networks with an accuracy of Top-3 prediction of over 88%.
More specifically, the explainability of the Bayesian network in the model was achieved by
building connections between diseases and symptoms. Then, three certificated physicians
evaluated the explanation of the model by reviewing the extracted relationships in the
medical knowledge graph. In [34], Rucco et al. combined the topological and textural
features and presented an XAI application to diagnose glioblastoma. In addition, the au-
thors validated the proposed AI model on the fluid-attenuated inversion recovery (FLAIR)
for glioblastoma multiforme (GBM) classification. In terms of explainability, the authors
used LIME XAI methods to compute the local feature relevance to samples in the test set.
In [35], Gu et al. proposed a computer-aided diagnosis system named VINet to provide
diagnostic visual interpretations. The proposed VINet achieved an 82.15% classification
accuracy on a computed tomography image dataset (LUNA16). Furthermore, the authors
compared VINet with other XAI methods such as CAM, visual back-propagation (VBP),
and layer-wise relevance propagation (LRP). Moreover, it could demonstrate SOTA visual
interpretations.

In [36], Kroll et al. developed a grammatical evolution-based framework for Alzheimer’s
disease (AD) diagnosis and prognosis. The proposed framework was evaluated on a mag-
netic resonance imaging (MRI) dataset, and the experimental results showed that it could
provide both accuracy and explainability. The grammatical evolution could generate pat-
terns of strings according to the production rules. In terms of explainability, the authors
utilized grammatical evolution for feature representation and then applied them in clas-
sification. Meldo et al. proposed a lung cancer computer-aided diagnosis system with
explanation sentences [37]. The proposed system consists of two parts: the first part is a
local post hoc XAI model using LIME; the second part transforms the selected the important
features into natural language. In [38], Yeboah et al. presented an ensemble clustering-
based XAI model for traumatic brain injury (TBI) prognostic and diagnostic analysis. In
addition, the proposed explainable framework can combine automated data analytics and
medical expert knowledge. Regarding the interpretation, the framework utilized quality
assessment of the clustering features, the discriminant features identification and clinical
interpretation. In [39], Wang et al. proposed a CNN-based model named COVID-Net for
COVID-19 case detection using chest X-ray (CXR) images. The authors also compared
COVID-Net with VGG-19 and ResNet-50. COVID-Net achieved a 93.3% accuracy on the
COVIDx test dataset and 91% sensitivity. Additionally, the authors applied the XAI method
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GSInquire [40] to investigate the prediction of the COVID-Net. GSInquire could be used to
obtain improved insights into neural networks and can also learn to generate networks.

In [41], Sabol et al. proposed an XAI application named the cumulative fuzzy class
membership criterion (CFCMC) that could assist pathologists and be used for colorectal
cancer diagnosis. The proposed system provides explainability through a semantical
explanation of the tissue type classification results. In addition, CFCMC showed the original
whole slide images (WSI) of the tissue and its corresponding label map visualization. The
proposed XAI model was evaluated by 14 pathologists. Wei et al. designed an AI-assisted
diagnosis of thyroid nodules and then tested the model for classification performance [42].
Additionally, the authors applied data pre-processing techniques to localize and diagnose
thyroid nodules. Through conducting experiments, they found that the A/T ratio and
margin information of thyroid nodules are important clinical features for thyroid nodules
diagnostics. The authors utilized class activation mapping to visualize the proposed CNN-
based neural network for model explainability. CAM uses global average pooling and
a fully connected layer to visualize the neural network and display the most important
features. In [43], Chang et al. presented an explainable deep neural network (EDNN). The
model was trained on a dataset with 200 schizophrenic patients and healthy controls in
the Taiwan Aging and Mental Illness (TAMI) cohort. Using the TAMI cohort, the proposed
framework achieved an 84.0% accuracy in gray matter (GM) and 90.22% accuracy in white
matter (WM). In terms of explainability, the system provided a three-dimensional (3D)
visualization of the subject’s brain imaging data that could optimize the diagnostic process.
In [44], Magesh et al. proposed a CNN-based model for early Parkinson’s disease (PD)
detection. The dataset in the paper consisted of 642 single-photon emission computed
tomography (SPECT) images from the Parkinson’s Progression Markers Initiative (PPMI)
database. Furthermore, the authors utilized transfer learning on the CNN-based model.
The post hoc XAI method LIME was used for interpretation in the research. LIME could
emphasize the regions of interest in the SPECT image with the impact areas that classify
the data as healthy controls.

In [45], Cho et al. proposed an interpretable machine learning method to predict post-
stroke hospital discharge disposition. The authors selected linear model logistic regression
(LR) as the baseline model and then compared it with the black-box model, including RF,
RF with AdaBoost, and MLP. To interpret the black-box model, the author utilized LIME
and provided explanations for the prediction. By using LIME, the authors identified the
most important features for the model. More specifically, features such as age, diabetes,
and source of admission were important for post-stroke hospital discharge disposition
prediction. Lamy et al. presented a visual case-based reasoning (CBR) approach for
breast cancer diagnosis [46]. CBR used a database of previously solved cases to determine
the answer to a query case. This is a form of analogical reasoning. From the database,
similar cases were retrieved, and their solutions were then adapted to the query. The
proposed automatic rainbow boxes-inspired algorithm (RIBA) was compared with kNN
and distance-weighted kNN (WkNN). Additionally, the proposed method achieved an
80.3% accuracy on a real breast cancer dataset. Moreover, medical experts evaluated the
proposed XAI application and they found the visual CBR approach to be very appealing.
In [47], Das et al. proposed an XAI model for Alzheimer’s disease (AD) diagnosis, named a
sparse high-order interaction model with rejection option (SHIMR). The proposed SHIMR
was validated on the AD dataset, and shown to have high accuracy, interpretability, and
cost-effectiveness. Using SHIMR, highly accurate and interpretable decision sets could
be created, with collections of “if–then” rules that reflected the higher-order interactions
between a set of individual features could be discovered.

3.2. Surgery

In [48], Yoo et al. presented a multiclass XGBoost model to select the laser surgery
option at an expert level. The authors validated the proposed method on the subjects
who had refractive surgery at the B&VIIT Eye Center and achieved a 78.9% accuracy
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on the external validation dataset. This also provides a clinical understanding of the
machine learning method using the SHAP technique. In [49], Mirchi et al. proposed
a framework that can be used for surgical training with automated educational visual
feedback. The authors trained and evaluated an SVM model on the simulated medical
and surgical data and achieved an accuracy of 92%, a specificity of 82%, and a sensitivity
of 100%. Additionally, they provided a thorough explanation of the proposed machine
learning algorithm by identifying the teachable metrics that contribute to the classification.
Fawaz et al. presented an accurate and interpretable surgical skill assessment medical
application by training a fully convolutional neural (FCN) network to classify surgical
skill levels using surgical kinematics [50]. The proposed model achieved state-of-the-art
performance on the JIGSAWS public dataset for three surgical skill tasks. Moreover, the
authors applied the CAM to provide interpretable classification feedback. The visual
feedback provided by the CAM is shown in Figure 5 below. CAM is a visual explanation
post hoc XAI method used for CNN-based models to locate the features in the CNN that
influence classification decisions. More specifically, CAM uses a global average pooling
(GAP) layer after the convolutional layer with the possibility to visualize which trial parts
contribute most to skill classification. Through investigation of the behavior specific to
a skill level, observers could identify motion patterns characteristic of a particular class
of surgeons.

Diagnostics 2022, 11, x FOR PEER REVIEW 9 of 18 
 

 

 

Figure 5. Visual feedback of the surgeon’s surgical task using CAM [50]. Visual feedback for the 

surgeon’s surgical task using CAM [50]. The red and orange subsequences in the plot show the 

high contribution to the surgeon’s surgical skill assessment task. In contrast, the green and blue 

subsequences indicate the low contribution. 

4. Discussion 

4.1. Current Research Trends 

Artificial intelligence techniques such as deep learning have recently played a revo-

lutionary role in healthcare, including diagnosis and surgery. These techniques have been 

shown to be effective in these fields. The accuracy of some deep-learning-based diagnosis 

tasks even surpasses human medical experts. However, the black-box nature of the deep 

learning model limits the explainability of these models and limits their practical deploy-

ment in medicine. In the interdisciplinary field of artificial intelligence and medicine, 

many researchers have realized that the key of AI deployment in the clinical environment 

is not the accuracy of the model, but the explainability of the AI model. Medical AI appli-

cations should be explained before being accepted and integrated into the medical prac-

tice. Hence, the acceptance of medical AI applications requires explainable artificial intel-

ligence, and there is motivation to survey the medical XAI. 

In this survey, we included 27 papers in diagnosis and surgery using explainable 

artificial intelligence. As observed in Tables 1 and 2, the studies included in this survey 

were analyzed from the perspectives of AI algorithm, XAI method, and AI performance. 

We found that the most popular traditional machine learning algorithm is random forest, 

with 25.9% (7/27) of the published papers reported in this survey having conducted ex-

periments with random forest; the most popular deep learning method is convolutional 

neural networks (CNNs), with 37.0% (10/27) papers utilizing CNN-based model such as 

VGG-16; furthermore, LIME is the most commonly used XAI approach in these papers, 

with 25.9% (7/27) of the papers utilizing LIME to explain the proposed machine learning 

model. For the XAI methods, most of the papers used post hoc methods, and followed the 

pipeline introduced in Figure 3. They firstly applied deep learning algorithms such as 

CNN-based models or complex machine learning random forest models and then used 

post hoc methods such as LIME, SHAP and PDP to explain the AI model; secondly, they 

Figure 5. Visual feedback of the surgeon’s surgical task using CAM [50]. Visual feedback for the
surgeon’s surgical task using CAM [50]. The red and orange subsequences in the plot show the
high contribution to the surgeon’s surgical skill assessment task. In contrast, the green and blue
subsequences indicate the low contribution.

In [51], Kletz et al. proposed a CNN-based medical application that can learn the
representation of instruments in laparoscopy, and they validated the model on various
datasets. They also provided activation maps of different CNN layers to help understand
how the model classified the instrument. An explainable AI system, XAI-CBIR, was
proposed by Chittajallu et al. for surgical training [52]. XAI-CBIR is an explanation by
example post hoc XAI method. It provides explanations by extracting the representative
examples. More specifically, it exploits a self-supervised deep learning model to extract
semantic descriptors from MIS video frames. In addition, it used a saliency map to provide
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a visual explanation as to why the system believes that the retrieved image is similar to
the query image. By utilizing the XAI-CBIR system, minimally invasive surgery (MIS)
videos can be retrieved based on their content. The proposed system was evaluated on the
Cholec80 dataset, and the percentage of relevant frames among the top 50 retrieved frames
for three phases were 64.42%, 99.54%, and 99.09%, respectively. In addition, they applied a
saliency map to guide relevance feedback with visual explanations.

4. Discussion
4.1. Current Research Trends

Artificial intelligence techniques such as deep learning have recently played a revolu-
tionary role in healthcare, including diagnosis and surgery. These techniques have been
shown to be effective in these fields. The accuracy of some deep-learning-based diagnosis
tasks even surpasses human medical experts. However, the black-box nature of the deep
learning model limits the explainability of these models and limits their practical deploy-
ment in medicine. In the interdisciplinary field of artificial intelligence and medicine, many
researchers have realized that the key of AI deployment in the clinical environment is not
the accuracy of the model, but the explainability of the AI model. Medical AI applications
should be explained before being accepted and integrated into the medical practice. Hence,
the acceptance of medical AI applications requires explainable artificial intelligence, and
there is motivation to survey the medical XAI.

In this survey, we included 27 papers in diagnosis and surgery using explainable
artificial intelligence. As observed in Tables 1 and 2, the studies included in this survey
were analyzed from the perspectives of AI algorithm, XAI method, and AI performance.
We found that the most popular traditional machine learning algorithm is random forest,
with 25.9% (7/27) of the published papers reported in this survey having conducted
experiments with random forest; the most popular deep learning method is convolutional
neural networks (CNNs), with 37.0% (10/27) papers utilizing CNN-based model such as
VGG-16; furthermore, LIME is the most commonly used XAI approach in these papers,
with 25.9% (7/27) of the papers utilizing LIME to explain the proposed machine learning
model. For the XAI methods, most of the papers used post hoc methods, and followed
the pipeline introduced in Figure 3. They firstly applied deep learning algorithms such as
CNN-based models or complex machine learning random forest models and then used
post hoc methods such as LIME, SHAP and PDP to explain the AI model; secondly, they
built the medical applications and provided decision-making to the doctors. In addition,
regrading XAI evaluation, only 11.1% (3/27) of studies applied XAI evaluation.

Table 1. Literature review of medical XAI applications in diagnosis.

SN# Reference Year Aim AI Algorithm AI Evaluation
Metrics XAI Method XAI Method

Type
XAI Eval-
uation?

1 [24] 2021 Allergy
diagnosis

kNN, SVM, C
5.0, MLP,

AdaBag, RF

Accuracy: 86.39%
Sensitivity: 75%

Condition-
prediction

(IF-THEN) rules
Rule-based No

2 [25] 2021 Breast cancer
therapies Cluster analysis N/A

Adaptive
dimension
reduction

Dimension
reduction No

3 [26] 2021 Spine One-class SVM,
binary RF

F1: 80 ± 12%
MCC: 57 ± 23%
BSS: 33 ± 28%

Local
interpretable

model-agnostic
explanations

(LIME)

Explanation by
simplification No
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Table 1. Cont.

SN# Reference Year Aim AI Algorithm AI Evaluation
Metrics XAI Method XAI Method

Type
XAI Eval-
uation?

4 [27] 2021 Alzheimer’s
disease

Two-layer model
with RF

First layer:
accuracy: 93.95%
F1-score: 93.94%

Second
layer: 87.08%

F1-score: 87.09%

SHAP, Fuzzy
Feature

relevance,
rule-based

No

5 [28] 2021 Hepatitis LR, DT, kNN,
SVM, RF Accuracy: 91.9%

SHAP, LIME,
partial

dependence
plots (PDP)

Feature
relevance,

explanation by
simplification

No

6 [30] 2021 Chronic
wound

CNN-based
model:

pretrained
VGG-16

Precision: 95%
Recall: 94%

F1-score: 94%
LIME Explanation by

simplification No

7 [31] 2021 Fenestral
otosclerosis

CNN-based
model: proposed

otosclerosis-
logical neural

network (LNN)
model

AUC: 99.5%
Sensitivity: 96.4%
Specificity: 98.9%

Visualization of
learned deep

representations

Visual
explanation No

8 [32] 2021
Lymphedema

(Chinese
EMR)

Counterfactual
multi-

granularity
graph

supporting facts
extraction

(CMGE) method

Precision: 99.04%
Recall: 99.00%

F1-score: 99.02%

Graph neural
network,

counterfactual
reasoning

Restricted
neural network

architecture
No

9 [33] 2020 Clinical
diagnosis

Entity-aware
Convolutional

neural networks
(ECNNs)

Top-3
sensitivity: 88.8%

Bayesian
network

ensembles

Bayesian
models Yes

10 [34] 2020

Glioblastoma
multiforme

(GBM)
diagnosis

VGG16 Accuracy: 97% LIME Explanation by
simplification No

11 [35] 2020
Pulmonary

nodule
diagnostic

CNN Accuracy: 82.15%

Visually
interpretable

network
(VINet), LRP,
CAM, VBP

Visual
explanation No

12 [36] 2020
Alzheimer’s

disease
diagnosis

Naïve Bayes
(NB),

grammatical
evolution

ROC: 0.913
Accuracy: 81.5%
F1-score: 85.9%

Brier: 0.178

Context-free
grammar (CFG) Rule-based No

13 [37] 2020 Lung cancer
diagnosis

Neural
networks, RF N/A

LIME, natural
language

explanation

Explanation by
simplification,

text explanation
No

14 [38] 2020

Traumatic
brain

injury (TBI)
identification

k-means, spectral
clustering,

gaussian mixture
N/A

Quality
assessment of
the clustering

features

Feature
relevance No
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Table 1. Cont.

SN# Reference Year Aim AI Algorithm AI Evaluation
Metrics XAI Method XAI Method

Type
XAI Eval-
uation?

15 [39] 2020

COVID-
19 chest

X-ray
diagnosis

CNN-based
model: proposed

COVID-Net

Accuracy: 93.3%
Sensitivity: 91.0% GSInquire

Restricted
neural network

architecture
No

16 [41] 2020
Colorectal

cancer
diagnosis

CNN

Accuracy: 91.08%
Precision: 91.44%

Recall: 91.04%
F1-score: 91.26%

Explainable
Cumulative
Fuzzy Class
Membership

Criterion
(X-CFCMC)

Visual
explanation Yes

17 [42] 2020
Diagnosis of

thyroid
nodules

Neural network
Accuracy: 93.15%
Sensitivity: 92.29%
Specificity: 93.62%

CAM Visual
explanation No

18 [43] 2020

Phenotyping
psychiatric
disorders
diagnosis

DNN

White matter
accuracy: 90.22%
Sensitivity: 89.21%
Specificity: 91.23%

Explainable
deep neural

network
(EDNN)

Visual
explanation No

19 [44] 2020
Parkinson’s
disease (PD)

diagnosis
CNN

Accuracy: 95.2%
Sensitivity: 97.5%
Specificity: 90.9%

LIME Explanation by
simplification No

20 [45] 2019

Post-stroke
hospital

discharge
disposition

LR, RF, RF with
AdaBoost, MLP

Test accuracy: 71%
Precision: 64%

Recall: 26%
F1-score: 59%

LR, LIME
Intrinsic,

Explanation by
simplification

No

21 [46] 2019

Breast cancer
diagnostic

decision and
therapeutic

decision

kNN, distance-
weighted kNN

(WkNN),
rainbow

boxes-inspired
algorithm (RBIA)

Accuracy: 80.3%
Case-based

reasoning (CBR)
approach

Explanation by
example Yes

22 [47] 2019 Alzheimer’s
diagnosis RF, SVM, DT

Sensitivity: 84%
Specificity: 67%

AUC: 0.81

An interpretable
ML model:

sparse
high-order
interaction
model with

rejection option
(SHIMR)

Rule-based No

SN#: serial number; N/A: not applicable; AI: artificial intelligence; XAI: explainable artificial intelligence;
kNN: k-nearest neighbor; SVM: support vector machine; MLP: multi-layer perceptron; RF: random forest;
MCC: matthews correlation coefficient; BSS: brier skill score; SHAP: SHapley Additive exPlanations; LR: logistic
regression; DT: decision tree; LIME: Local interpretable model-agnostic explanations; PDP: partial dependence
plots; CNN: convolutional neural networks; DNN: deep neural network; AUC: area under the curve.

The summary of this survey suggests that different machine learning methods or
deep learning methods would be optimal solutions for various medical XAI applications.
There is no unified machine learning model or XAI approach that suit all the diagnosis and
surgery task, and it would depend on the dataset size, data type, and many other factors.
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Table 2. Literature review of medical XAI applications in surgery.

SN# Reference Year Aim AI
Algorithm

AI Evaluation
Metrics XAI Method XAI Method

Type
XAI Eval-
uation?

23 [48] 2020
Evidence-based

recommendation
surgery

XGBoost Validation
accuracy: 78.9% SHAP Feature

relevance No

24 [49] 2020 Surgery training SVM
Accuracy: 92%

Sensitivity: 100%
Specificity: 82%

Virtual
operative
assistant

Feature
relevance No

25 [50] 2019 Surgical skill
assessment FCN

Suturing
accuracy: 100%
Needle passing
accuracy: 100%

Knot tying
accuracy: 92.1%

CAM Visual
explanation No

26 [51] 2019

Automatic
recognition of
instruments in

laparoscopy
videos

CNN

M2CAI Cholec
data tuning on

InstCnt
non-instrument

Instrument:
Precision: 96%

Sensitivity: 86%
F1-score: 97%

Activation maps Visual
explanation No

27 [52] 2019 Surgical
education CNN

Percentage of
relevant frames

among top
50 retrieved

frames for three
phases: 64.42%,
99.54%, 99.09%

Saliency map,
content-based
image retrieval

Visual
explanation,

explanation by
example

No

SN#: serial number; AI: artificial intelligence; XAI: explainable artificial intelligence; SHAP: SHapley Additive
exPlanations; SVM: support vector machine; FCN: fully convolutional neural network; CAM: class activation
mapping; CNN: convolutional neural networks.

4.2. Experimental Showcase: Breast Cancer Diagnosis

We have analyzed the current research trends by summarizing the literature included
in the survey. In addition, to better understand the XAI methods, we have demonstrated
one medical XAI application experimental showcase, which is a breast cancer diagnosis.

4.2.1. Dataset

One of the most common forms of cancer among women is breast cancer. In this paper,
we use a real-world breast cancer Wisconsin (Diagnostic) dataset which contains 569 pa-
tients [52]. The dataset is publicly available from UCI machine learning repository: https://
archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29 (Accessed
on 22 December 2021). The dataset features are numerical and extracted from the digitized
image of a breast mass’s fine needle aspirate (FNA). In terms of the class distribution, there
are 357 benign and 212 malignant.

4.2.2. Experiment Setup

The experiments were performed on a laptop with a 2.6 GHz 6-Core CPU and imple-
mented in Python: 70% of the breast cancer dataset was the training dataset, and 30% of
the dataset was the testing dataset. The proposed black-box model was trained using the
Scikit-learn toolkit [53]. For XAI methods, we utilize the Python library InterpretML [54].

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
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4.2.3. Intrinsic XAI Method: Rule-Based

Rule-based methods are logical expressions of the form IF-THEN. We implemented
a rule based on the breast cancer classification task in this showcase. In addition, we
evaluated the model’s performance in terms of accuracy, precision, recall, and F1-score.
The proposed rule-based model achieved an accuracy of 60.81%, precision 60.95%, recall
99.04%, and F1-score 75.46%.

4.2.4. Post hoc XAI Method: SHAP

The type of dataset was numerical, and we selected a random forest with 300 trees
as the black-box model. The random forest achieved an accuracy of 95.91%, precision of
97.09%, recall of 96.15%, and F1-score of 96.62%. The random forest performed better than
the rule-based method. In addition, we applied the post hoc method SHAP to explain
the black-box model. SHAP is a feature relevance post hoc XAI method inspired by game
theory. It aims to increase interpretability by calculating the importance value of each
feature for each prediction using Shapley values. As shown in Figure 6, it demonstrates
how SHAP interprets the black-box model’s prediction.
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4.2.5. Post hoc XAI Method: LIME

LIME is an explanation by simplification post hoc XAI method, which can explain a
single prediction generated by any black-box model. It explains a prediction by replacing
the complex model with a locally interpretable surrogate model. By focusing on a suffi-
ciently narrow decision surface, LIME attempts to explicitly model the local neighborhood
of any prediction. Figure 7 is an example of LIME to interpret a black-box model’s pre-
diction. More specifically, the features “worst area”, “worst radius”, “worst perimeter”,
“worst texture”, “worst concavity”, “mean texture” and “mean area” has a positive effect on
the prediction.
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4.2.6. Post hoc XAI Method: PDP

PDP is also a feature relevance explanation post hoc XAI method, which interprets the
black-box model by plotting the impact of subsets of features on the model’s predictions.
Figure 8 is a PDP visualization of the dependence between the feature “mean radius” and
the response.
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4.3. Challenges, Limitations and Research Gaps

The survey also identified some challenges and limitations. Firstly, in some papers,
accuracy was the only machine learning evaluation metric used to evaluate the model
performance, which is unreasonable. Using one evaluation metric cannot provide an
objective evaluation of the machine learning algorithm. Secondly, the size of these datasets
in medical XAI applications was relatively small, and the data quality of these datasets was
not guaranteed. Hence, the AI model’s performance may be limited by the small dataset
size and low input data quality. The AI model was only trained and validated on the small
dataset; therefore, the model was likely to cause an overfitting issue. The generalization
of the model was low. Thirdly, in terms of the XAI evaluation, there are still no unified
XAI evaluation methods accepted by most researchers in the community. XAI models
can only be evaluated qualitatively because evaluation still relies on human cognition.
However, most of the papers in this survey only provided the XAI methods without any
XAI evaluation. Only a few researchers provided XAI evaluations by medical professionals.
Finally, many of the studies only applied the existing machine learning or XAI methods.
These AI approaches were designed without any medical experts’ participation, which
resulted in these medical XAI applications having a lack of innovation and prior knowledge
from the doctors, and they may not meet the doctor’s actual clinical needs.

We also concluded with two research gaps we have found after reviewing the medical
XAI literature. Firstly, the majority of studies in the interdisciplinary field of artificial intel-
ligence and medicine focus on deep learning methods, including MLP, CNNs, RNNs, and
transformers. These deep learning-based models, such as transformers, contain millions
of parameters and are hard to interpret. However, data scientists and AI experts in the
interdisciplinary field of artificial intelligence and medicine should focus on XAI rather
than SOTA deep learning models. Secondly, medical XAI applications should be evaluated
by medical experts. However, most of the medical XAI applications lack XAI evaluation
and medical experts’ evaluation. The medical XAI applications should have well-designed
HCI and provide a reasonable explanation to medical experts.

4.4. Future Directions

For the future research directions, we believe that AI will be applied in many different
diagnoses and surgery-related tasks. XAI will play an essential role because it can increase
the transparency of these models and gain trust from doctors. To address the above
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challenges, initially, we think that it would be desirable to consider different evaluation
metrics such as specificity and sensitivity accordingly for machine learning evaluation, but
not only consider accuracy. Moreover, it would be preferable to use cross-validation to
validate the trained model. Next, in the future, we should collect and build the dataset from
multiple sources such as from various hospitals to increase the dataset size and improve
the machine learning model’s generalization ability.

In addition, we may also apply federated machine learning to keep identifiable med-
ical data safe. Additionally, some techniques such as data augmentation [54], transfer
learning [55], and few-shot learning [56] could be considered to address the issue of small
dataset sizes. Thirdly, in terms of XAI evaluation, there is no real consensus. No objective
and unified evaluation metric have been adopted. For general XAI evaluations, some
researchers have proposed an evaluation approach. For example, Holzinger et al. pre-
sented a new approach on explaining quality, which was called the system causability
scale (SCS) [53]. It utilized the Likert scale method and could quickly assess whether the
explainable model was appropriate for its intended purpose. However, for medical XAI
evaluation, we believe that this should be based on human-centered evaluation. More
specifically, it should be evaluated by both medical experts and AI experts. For example,
medical experts may evaluate the XAI method using the related clinical tasks to ensure the
medical XAI application which can make the explainable clinical inference. In comparison,
AI experts may evaluate the XAI applications on their generalization and robustness.

Finally, medical professionals should participate in the design and development stages
of future studies of medical XAI applications. A good medical XAI application requires
interdisciplinary collaboration. More specifically, medical experts should provide their
prior medical knowledge, and their suggestions as well as feedback will help improve the
design of AI algorithms. AI experts and data scientists should make sure that medical
XAI applications can assist medical experts in making the explainable clinical inference.
Consequently, we believe that the medical XAI models will become more acceptable to the
medical domain. In order to achieve that, improving human–computer interactions (HCIs)
is a promising approach. It will be feasible for both medical experts and AI experts to work
together via a well-designed HCI medical application.

4.5. Research Questions

The research questions asked in the Introduction of this review are discussed here.

RQ1: What are the current research trends on medical XAI applications?

Answer: Based on the reviewed literature included in this review, we have found that
most studies in the literature applied post hoc XAI methods. In general, they followed the
pipeline which we have illustrated in Figure 3.

RQ2: How does the studies included in this review tackle the trade-off between accuracy
and explainability?

Answer: We have summarized the surveyed studies and listed their AI evaluation metrics
and XAI evaluations. In terms of AI performance, most of the studies performed well.
However, only a few studies have provided XAI evaluations. In addition, most of the
papers did not evaluate the model’s effectiveness by medical experts. Therefore, we cannot
answer how these studies tackle the trade-off between accuracy and explainability.

RQ3: Is it possible to deploy these models in a clinical real-world environment to assist
medical experts in making explainable clinical inferences?

Answer: Currently, there are still many limitations to medical XAI applications, and it is
not feasible to deploy the models into the clinical environment. However, we believe that
the future direction for medical XAI applications is promising.

5. Conclusions

In conclusion, this article has reviewed the existing literature and provided an in-depth
survey of medical XAI applications in diagnosis and surgery. AI methods, XAI methods,



Diagnostics 2022, 12, 237 16 of 18

XAI type, XAI evaluation and AI performance of the included papers in the survey are all
discussed and compared. Additionally, we have presented an experimental showcase to
illustrate how different XAI methods can be utilized in medical XAI applications. Moreover,
we have provided a summary of the study and addressed the current limitations and
future perspectives of medical XAI applications. In the interdisciplinary field of artificial
intelligence and medicine, we believe that this review can reduce the gap between AI and
medical professionals and provide helpful information for future researchers to design
medical XAI applications.
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